Hello, I'm a beginner studying DataFrame at Python. I want to distinguish between letters and numbers in the specific column of the df. I looked it up and it seems like you're using the import re. I don't know what to do if there's a mix of numbers and letters.

```
df = pd.DataFrame({"idx4":["ex100f", "ew20", "ed200", None, None,"ed200f", "ed30f",None,"ew2",None,"ex3"] })
If there's a df like this, I want to get rid of the first "e" and separate the numbers from the letters to make idx5, idx6, idx7.
a1 idx3 idx4
b ex1.x.1 ex100f
c ex1.x ew20
d ex2.x.2 ed200
e ex2.x.3
f ex1.x.2
g ex2.x ed200f
h ex2.x.4 ed30f
i ex2.x.5
j ex1.x.3 ew2
k ex3.x
l ex2.x.6 ex3
m ex2.x.7 ed200f
```

```
I want to make it as below in the above df!
a1 idx3 idx4 idx5 idx6 idx7
b ex1.x.1 ex100f x 100 f
c ex1.x ew20 w 20
d ex2.x.2 ed200 d 200
e ex2.x.3
f ex1.x.2
g ex2.x ed200f d 200 f
h ex2.x.4 ed30f d 30 f
i ex2.x.5
j ex1.x.3 ew2 w 2
k ex3.x
l ex2.x.6 ex3 x 3
m ex2.x.7 ed200f d 200 f
```

2022-09-20 15:09

```
import pandas as pd
import re
def getNumber(myData):
myStringList = re.findall(r'\d+', str(myData))
if len(myStringList) > 0:
return int(myStringList[0])
else:
return ''
if __name__ == '__main__':
df = pd.DataFrame(
{
"idx4": ["ex100f", "ew20", "ed200", None, None, "ed200f", "ed30f", None, "ew2", None, "ex3"]
}
)
df['idx5'] = df['idx4'].apply(lambda x: x[1] if x is not None else '')
df['idx6'] = df['idx4'].apply(lambda x: getNumber(x))
df['idx7'] = df['idx4'].apply(lambda x: x[-1] if x is not None and x[-1].isalpha() else '')
print(df)
```

2022-09-20 15:09

Popular Tags

© 2022 pinfo. All rights reserved.